Emerging Trends in Glaucoma Management: Advancements in Diagnostic Modalities, Therapeutic Interventions, and Personalized Medicine Approaches
Main Article Content
Abstract
Glaucoma, a progressive optic neuropathy characterized by retinal ganglion cell degeneration and visual field loss, remains a leading cause of irreversible blindness worldwide. Recent advancements in imaging technologies, minimally invasive surgical techniques (MIGS), and neuroprotective therapies have revolutionized the diagnostic and therapeutic landscape of this multifactorial disease. This article explores contemporary trends in glaucoma care, including the integration of artificial intelligence (AI) in optical coherence tomography (OCT) analysis, the role of biomarkers in early detection, and the paradigm shift toward personalized treatment strategies. Additionally, we review novel pharmacological agents targeting intraocular pressure (IOP)-independent mechanisms, such as Rho kinase inhibitors and adenosine receptor agonists, as well as innovations in sustained-release drug delivery systems. The synthesis of current evidence underscores the importance of a multidisciplinary approach to optimize patient outcomes and mitigate disease progression in at-risk populations.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090.
II. Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279.
III. Coan, L.J.; Williams, B.M.; Krishna Adithya, V.; Upadhyaya, S.; Alkafri, A.; Czanner, S.; Venkatesh, R.; Willoughby, C.E.; Kavitha, S.; Czanner, G. Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Surv. Ophthalmol. 2023, 68, 17–41.
IV. Zhu, Y.; Salowe, R.; Chow, C.; Li, S.; Bastani, O.; O’Brien, J.M. Advancing Glaucoma Care: Integrating Artificial Intelligence in Diagnosis, Management, and Progression Detection. Bioengineering 2024, 11, 122. [
V. Barry, S.; Wang, S.Y. Predicting Glaucoma Surgical Outcomes Using Neural Networks and Machine Learning on Electronic Health Records. Transl. Vis. Sci. Technol. 2024, 13, 15.
VI. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 2000, 130, 429–440.
VII. Kim, J.; Park, J.; Park, Y.G.; Cha, E.; Ku, M.; An, H.S.; Lee, K.P.; Huh, M.I.; Kim, J.; Kim, T.S.; et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat. Biomed. Eng.2021, 5, 772–782.
VIII. Zhang, Y.; Wei, Y.; Lee, C.H.C.; Or, P.W.; Karunaratne, I.K.; Deng, M.; Yang, W.; Chong, I.T.; Yang, Y.; Chen, Z.; et al. Continuous 24-hour intraocular pressure monitoring in normal Chinese adults using a novel contact lens sensor system. Br. J. Ophthalmol. 2024, 108, 1535–1542.
IX. Gillmann, K.; Wasilewicz, R.; Hoskens, K.; Simon-Zoula, S.; Mansouri, K. Continuous 24-hour measurement of intraocular pressure in millimeters of mercury (mmHg) using a novel contact lens sensor: Comparison with pneumatonometry. PLoS ONE 2021, 16, e0248211.
X. Wasilewicz, R.; Varidel, T.; Simon-Zoula, S.; Schlund, M.; Cerboni, S.; Mansouri, K. First-in-human continuous 24-hour measurement of intraocular pressure and ocular pulsation using a novel contact lens sensor. Br. J. Ophthalmol. 2020, 104, 1519–1523.
XI. Yang, Z.; Tatham, A.J.; Zangwill, L.M.; Weinreb, R.N.; Zhang, C.; Medeiros, F.A. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am. J. Ophthalmol.2015, 159, 193–201.
XII. Kim, Y.W.; Lee, J.; Kim, J.S.; Park, K.H. Diagnostic Accuracy of Wide-Field Map from Swept-Source Optical Coherence Tomography for Primary Open-Angle Glaucoma in Myopic Eyes. Am. J. Ophthalmol. 2020, 218, 182–191.
XIII. Janssens, R.; van Rijn, L.J.; Eggink, C.A.; Jansonius, N.M.; Janssen, S.F. Ultrasound biomicroscopy of the anterior segment in patients with primary congenital glaucoma: A review of the literature. Acta Ophthalmol.2022, 100, 605–613.
XIV. Xu, Q.; Zhang, Y.; Wang, L.; Chen, X.; Sun, X.; Chen, Y. The correlation of anterior segment structures in primary congenital glaucoma by ultrasound biomicroscopy with disease severity and surgical outcomes. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1245–1252.
XV. Chen, L.; Xiong, K.; Wu, J. Comparison of anterior chamber depth measured by anterior segment optical coherence tomography and ultrasound biomicroscopy: A meta-analysis. Nan Fang Yi Ke Da Xue Xue Bao2013, 33, 1533–1537.
XVI. Alexander, J.L.; Wei, L.; Palmer, J.; Darras, A.; Levin, M.R.; Berry, J.L.; Ludeman, E. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye 2021, 35, 265–276. Wang, S.B.; Cornish, E.E.; Grigg, J.R.; McCluskey, P.J. Anterior segment optical coherence tomography and its clinical applications. Clin. Exp. Optom. 2019, 102, 195–207.
XVII. Desmond, T.; Tran, V.; Maharaj, M.; Carnt, N.; White, A. Diagnostic accuracy of AS-OCT vs gonioscopy for detecting angle closure: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 1–23
XVIII. Olyntho, M.A.C., Jr.; Jorge, C.A.C.; Castanha, E.B.; Gonçalves, A.N.; Silva, B.L.; Nogueira, B.V.; Lima, G.M.; Gracitelli, C.P.B.; Tatham, A.J. Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis. J. Glaucoma 2024, 33, 658–664.