Stargardt Disease: A Comprehensive Review of Pathophysiology, Clinical Features, and Emerging Therapeutic Strategies
Main Article Content
Abstract
Stargardt disease (STGD), the most prevalent form of inherited juvenile macular dystrophy, is an autosomal recessive disorder primarily caused by pathogenic variants in the ABCA4 gene. This condition leads to progressive central vision loss due to the accumulation of lipofuscin-like deposits in the retinal pigment epithelium (RPE), ultimately resulting in photoreceptor degeneration. The pathophysiological mechanisms underlying STGD involve dysregulated vitamin A metabolism, aberrant bisretinoid accumulation, and chronic oxidative stress within the RPE. Clinically, patients present with reduced visual acuity, central scotomas, and characteristic fundoscopic findings, including flecks at the level of the RPE and a "beaten bronze" macular appearance. The diagnosis relies on multimodal imaging techniques such as fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT), and electroretinography (ERG), alongside genetic testing for ABCA4 mutations. Current management is mainly supportive, focusing on low-vision rehabilitation and avoidance of excessive light exposure, given the potential exacerbation of phototoxic damage. However, recent advances in gene therapy, stem cell transplantation, and pharmacologic interventions targeting the visual cycle offer promising therapeutic prospects. This review aims to provide a comprehensive analysis of the molecular pathogenesis, clinical manifestations, diagnostic approach, and evolving treatment modalities for Stargardt disease, highlighting the translational potential of novel interventions in altering disease progression.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Tanna P., Strauss R.W., Fujinami K., Michaelides M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2017;101:25–30.
doi: 10.1136/bjophthalmol-2016-308823.
II. Wang L., Shah S.M., Mangwani-Mordani S., Gregori N.Z. Updates on Emerging Interventions for Autosomal Recessive ABCA4-Associated Stargardt Disease. J. Clin. Med. 2023;12:6229.
doi: 10.3390/jcm12196229.
III. Lenis T.L., Hu J., Ng S.Y., Jiang Z., Sarfare S., Lloyd M.B., Esposito N.J., Samuel W., Jaworski C., Bok D., et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc. Natl. Acad. Sci. USA. 2018;115:E11120–E11127.
doi: 10.1073/pnas.1802519115.
IV. Rosenberg T., Baumann B., Allikmets R. Inherited Retinal Disease: Diagnosis and Clinical Management. Elsevier; Amsterdam, The Netherlands: 2019. Stargardt Disease: Genetics and Molecular Mechanisms; pp. 85–125.
V. Cicinelli M.V., Battista M., Starace V., Battaglia Parodi M., Bandello F. Monitoring and Management of the Patient with Stargardt Disease. Clin. Optom. 2019;11:151–165. doi: 10.2147/OPTO.S226595.
VI. Galvin O., Chi G., Brady L., Hippert C., Rubido M.D.V., Daly A., Michaelides M. The impact of inherited retinal diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a cost-of-illness perspective. Clin. Ophthalmol. 2020;14:707–719. doi: 10.2147/OPTH.S241928
VII. Wittenborn J.S., Zhang X., Feagan C.W., Crouse W.L., Shrestha S., Kemper A.R., Hoerger T.J., Saaddine J.B. The economic burden of vision loss and eye disorders among the United States population younger than 40 years. Ophthalmology. 2013;120:1728–1735.
doi: 10.1016/j.ophtha.2013.01.068.
VIII. Sabel B.A., Wang J., Cárdenas-Morales L., Faiq M., Heim C. Mental stress as consequence and cause of vision loss: The dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J. 2018;9:133–160.
doi: 10.1007/s13167-018-0136-8.
IX. Heath Jeffery R.C., Mukhtar S.A., McAllister I.L., Morgan W.H., Mackey D.A., Chen F.K. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021;42:431–439. doi: 10.1080/13816810.2021.1913610.
X. Arsenijevic Y., Berger A., Udry F., Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics. 2022;14:1605.
doi: 10.3390/pharmaceutics14081605.
XI. Piotter E., McClements M.E., MacLaren R.E. Therapy Approaches for Stargardt Disease. Biomolecules. 2021;11:1179.
doi: 10.3390/biom11081179.
XII. Huang X., Ruan G., Zhang J., Luo F., Zhao K. Genetic Diagnosis of Familial Exudative Vitreoretinopathy by Targeted Next-Generation Sequencing. Ophthalmic Genet. 2021;42:196–202. doi: 10.1080/13816810.2021.1966053.
XIII. Cremers F.P.M., Lee W., Collin R.W.J., Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 2020;79:100861.
doi: 10.1016/j.preteyeres.2020.100861.
XIV. Spiteri Cornish K., Ho J., Downes S., Scott N.W., Bainbridge J., Lois N. The Epidemiology of Stargardt Disease in the United Kingdom. Ophthalmol. Retina. 2017;1:508–513.
doi: 10.1016/j.oret.2017.03.001.
XV. Runhart E.H., Dhooge P., Meester-Smoor M., Pas J., Pott J.W.R., van Leeuwen R., Kroes H.Y., Bergen A.A., de Jong-Hesse Y., Thiadens A.A., et al. Stargardt disease: Monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmol. 2022;100:395–402. doi: 10.1111/aos.14996