Carbapenem Resistant Pseudomonas Aeruginosa: A Multicenter Study on Prevalence, Distribution, and Risk Factors across Six Health Facilities in Yaoundé, Cameroon
Main Article Content
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is a significant public health threat, especially in low and middle-income countries. These strains are known to cause outbreaks, and their isolation continues to increase, further limiting therapeutic options. In Cameroon, however, there is limited data on the resistance profiles of circulating Carbapenem-resistant Pseudomonas aeruginosa strains. This study aimed to determine the prevalence, distribution and susceptibility profile of Carbapenem-resistant Pseudomonas aeruginosa isolates from six health facilities in Yaoundé, Cameroon. An analytical cross-sectional study was conducted over nine months (November 2023–July 2024). Carbapenem-resistant Pseudomonas aeruginosa isolates from clinical specimens were collected and re-identified. After culturing on cetrimide and nutrient agar, biochemical identification was done using the API 2ONE system. Antimicrobial susceptibility testing was performed to assess resistance to carbapenems and other antibiotics. Carbapenemase and extended-spectrum Beta-lactamases production in Carbapenem resistant Pseudomonas aeruginosa was detected using the Carbapenem inhibition and combined disc methods. Of the 217 isolates, 125 (representing 57.6%) were confirmed as Pseudomonas aeruginosa, with 31.2% (39/125) resistant to carbapenems. Among these, 48.7% (19/39) were resistant to imipenem, and 51.3% (20/39) were resistant to meropenem. Carbapenemase production was observed in 46.2% (18/39), while coproduction of carbapenemase and extended-spectrum Beta-lactamases was observed in 28.20% (11/39). High resistance was also seen to cephalosporins (54.4%) and penicillin (59.2%). A majority of Carbapenem-resistant Pseudomonas aeruginosa isolates had a multiple antibiotic resistance index ≥ 0.2. This study underscores the growing public health concern posed by Carbapenem-resistant Pseudomonas strains. Enhanced surveillance is crucial to curb the dissemination and spread of these strains.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
I. Callejas-Díaz, A., Fernández, P., Ramos, M., Sánchez, R., and Núñez, V.2019. Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Med. Clín. 2019; 152, 83–89.
II. Bodro, M., Sabé, N., Tubau, F., Lladó, L., Baliellas, C., González-Costello, J., Cruzado, J.M., Carratalà, J. 2015. Extensively Drug-Resistant Pseudomonas aeruginosa Bacteremia in Solid Organ Transplant Recipients. Transplantation 2015, 99, 616–622.
III. Kara Ali, R., Surme, S., Balkan, I.I., Salihoglu, A., Sahin Ozdemir, M., Ozdemir, Y., Mete, B., Can, G., Ar, M.C., Tabak, F., et al. 2020. An eleven-year cohort of bloodstream infections in 552 febrile neutropenic patients: Resistance profiles of Gram-negative bacteria as a predictor of mortality. Ann. Hematol. 2020, 99, 1925–1932.
IV. Meletis G., Exindari M., Vavatsi N., Sofianou D. and Diza E. 2012. Mechanisms responsible for the emergence of Carbapenem resistant Pseudomonas aeruginosa. Hipprokratia, 16 (4): 303-307.
V. Antimicrobial resistance surveillance in Europe.2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), 14 p.
VI. Ettu A., Oladopo, B. and Aduyebo, O. 2021. Prevalence of carbapenemase production in Pseudomonas aeruginosa isolates causing infections in Lagos university teaching hospital Nigeria. Journal of Clinical and Experimental Microbiology, 22 (4): 498-503.
VII. Yangouo Collince Modeste. 2020. Evolution de la Résistance de Pseudomonas spp au Centre Hospitalier et Universitaire de Yaoundé I (CHUY) de 2010 à 2020. Mémoire de Master en microbiologie UYI, Yaoundé Cameroun, 75 p.
VIII. Wang, M.-G., Liu, Z.-Y., Liao, X.-P., Sun, R.-Y., Li, R.-B., Liu, Y., Fang, L.-X., Sun, J., Liu, Y.-H., and Zhang, R.-M.2021. Retrospective Data Insight into the Global Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. Antibiotics, 10, 548.
IX. Poirel, L., Nordmann, P., Lagrutta, E., Cleary, T., and Munoz-Price, L.S. 2010. Emergence of KPC-producing Pseudomonas aeruginosa in the United States. Antimicrob. Agents Chemother. 2010, 54, 3072.
X. Zowawi, H.M., Balkhy, H.H., Walsh, T.R., and Paterson, D.L. 2013. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin. Microbiol. Rev. 2013, 26, 361–380.
XI. Escandón-Vargas, K., Reyes, S., Gutiérrez, S., and Villegas, M.V. 2017. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev. Anti-Infect. Ther. 2017, 15, 277–297.
XII. Cecile, I., Paule, D., Djoulako, H., Christiane P., Feline, L., Kamga, W., and Katy, Jeannot.2023. Phenotypic characterization and prevalence of carbapenemase producing Pseudomonas aeruginosa Isolates in six health facilities in Cameroon. Biomed. 2023, 3, 77–88.
XIII. Comite de lAntibiogramme de la SFM (CA-SFM) v 1.0 juin 2024. https://www.sfm-microbiology.org/boutique/-comite-de-lantibiogramme-de-la-sfm-ca-sfm-v1.0-juin-2024/
XIV. European Committee on antimicrobial susceptibility testing (EUCAST). Recommendations 2023 V1.0 Juin.
XV. Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing (CLSI Supplement M100), Clinical and Laboratory Standards Institute, Wayne, PA, USA, 30 th edition.
XVI. World Health Organization. Global Tricycle Surveillance ESBL. 2024. WHO Integrate global surveillance on ESBL-producing E. coli using a One Health approach implementation and opportunities. https//ww.who.int/health-topics/antimicrobial-resistance
XVII. Walters, M.S., Grass, J.E., Bulens, S.N., Hancock, E.B., Phipps, E.C., Muleta, D., Mounsey, J., and Kainer, M.A., Concannon, C., Dumyati, G., et al. 2015. Carbapenem-resistant Pseudomonas aeruginosa at US Emerging infections program sites, 2015. Emerg. Infect. Dis. 2019, 25, 1281–1288.
XVIII. Ankur, K., Suprakash, D., Nahid, A., Viskash, O., and Sushmita, D. 2020. Antimicrobial susceptibility pattern of extended spectrum beta-lactamase (ESBL) and non ESBL producing Pseudomonas aeruginosa, isolated from pus samples from a tertiary care hospital in Bihar. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3646–3655.
XIX. Gonsu, K.H., Toukam, M., Sando, Z., Ngamba, N.J.M., Mbakop, D.C., and Adiogo, D. 2015. Phenotypic characterization of Pseudomonas aeruginosa isolates isolated in the city of Yaoundé (Cameroon). Afr. J. Pathol. Microbiol. 2015, 5, 1–4.
XX. López-Causapé, C., Cabot, G., Del Barrio-Tofiño, E., and Oliver, A. 2018. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 685.
XXI. Hernando-Amado, S., Sanz-Garcia, F., Blanco, P., and Martinez, J.L. 2017. Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem. 2017, 61, 37–48.
XXII. Moctar, M., Moffo, F., and Kihla, J. 2019. Antimicrobial resistance from a one health perspective in Cameroon: A systematic review and meta-analysid. BMC Public Health 2019, 19, 1135.
XXIII. Breidenstein, E.B., de la Fuente-Nunez, C.; Hancock, R.E. 2011. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426.
XXIV. Suárez, C., Peña, C., Arch, O., Domínguez, M.A., Tubau, F., Juan, C., Gavaldá, L., Sora, M., Oliver, A., Pujol, M.; et al.2011. A large sustained endemic outbreak of multiresistant Pseudomonas aeruginosa: A new epidemiological scenario for nosocomial acquisition. BMC Infect. Dis. 2011, 11, 272.
XXV. Castanhiera, M., Deshpande, L.M., Costello, A., Davies, T.A., and Jones, R.N. 2014. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–2011 in 14 European and Mediterranean countries. J. Antimicrob. Chemother. 2014, 69, 1804–1814.
XXVI. Al-Khudhairy, M.K., and Al-Shammari, M.M.M. 2020. Prevalence of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New Microbes New Infect. 2020, 35, 100661.
XXVII. Meletis G., Exindari M., Vavatsi N., Sofianou D. and Diza E. 2012. Mechanisms responsible for the emergence of Carbapenem resistant Pseudomonas aeruginosa. Hipprrokratia, 16 (4): 303-307.
XXVIII. Deplano, A., Denis, O., Poirel, L., Hocquet, D., Nonhoff, C., Byl, B., Nordmann, P., Vincent, J.L., and Struelens, M.J. 2005. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J. Clin. Microbiol. 2005, 43, 1198–1204.